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We propose and implement a new scheme of generating the
optical Einstein—Podolsky—Rosen entangled state. Parametric
down-conversion in two nonlinear crystals, positioned
back-to-back in the waist of a pump beam, produces
single-mode squeezed vacuum states in orthogonal polari-
zation modes; a subsequent beam splitting entangles
them and generates the Einstein-Podolsky—Rosen state.
The technique takes advantage of the strong nonlinearity
associated with type-0 phase-matching configuration
while, at the same time, eliminating the need for actively
stabilizing the optical phase between the two single-mode
squeezers. We demonstrate our method, preparing a 1.4 dB
two-mode squeezed state and characterizing it via two-
mode homodyne tomography. © 2016 Optical Society of
America

OCIS codes: (190.4970) Parametric oscillators and ampilifiers;
(270.6570) Squeezed states; (270.5585) Quantum information and
processing.
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The two-mode squeezed vacuum state is characterized by
simultaneous correlation of the positions and anticorrelation
of the momenta of two harmonic oscillators beyond the stan-
dard quantum limit defined by the vacuum state. Discovered in
1935 by Einstein, Podolsky, and Rosen [1], this state (which we
hereafter refer to as the EPR state) gave rise to the celebrated
quantum nonlocality paradox. With the emergence of quan-
tum-optical information technology, the EPR state became
the primary entangled resource for the continuous variable
domain. Its applications include quantum information process-
ing [2,3], quantum metrology [4-8], quantum imaging [8,9]
quantum cryptography [10,11], teleportation [12], and quan-
tum repeater [13,14] protocols.

While the EPR state can be prepared in a variety of
nonlinear physical media, such as atomic ensembles [9] and
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fibers [15], the most common approach employs spontaneous
parametric down-conversion (SPDC) in a crystal with second-
order nonlinearity. If SPDC is utilized in the nondegenerate
configuration, the EPR state is produced directly in its two out-
put channels [16,17]. This approach, however, is associated
with certain challenges. In particular, if the SPDC is noncol-
linear, critical phase matching may complicate the optical
alignment or distort the emission modes. Furthermore, such
an arrangement is difficult to set up within a Fabry—Perot
resonator. In collinear SPDC settings, on the other hand,
the emission modes are typically separated by means of the
type-2 phase-matching configuration in which the signal and
idler fields are orthogonally polarized. In many crystals, how-
ever, such an arrangement has significantly lower nonlinear co-
efficients than type-0, in which the pump, signal, and idler
fields have the same polarization [18].

Therefore, a frequently employed alternative approach is to
first obtain single-mode position- and momentum-squeezed
states in two independent optical modes via degenerate
SPDC and, subsequently, make them interfere on a symmetric
beam splitter [12,19,20]. The quadrature operators of the two
modes then transform according to
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producing the two-mode squeezed state at the output. While
this method allows one to obtain high degrees of squeezing
[20], it requires precise phase locking between the two squeezed
light sources, which is a significant technical complication.
In this Letter, we propose a scheme devoid of these draw-
backs. The idea, inspired by Kwiat ez al. [21], is to use a series
of two degenerate SPDC processes, placing the two nonlinear
crystals in a single waist of the pump beam immediately one
after another (Fig. 1). If the optical axes of the crystals are
orthogonal to each other, and the pump beam is polarized
diagonally between them, the two nonlinear processes will
squeeze orthogonally polarized vacuum modes. The two
squeezed vacua thereby populate a single spatial mode and
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can be put to interference using a pair of wave plates. Since the
distance between the crystals is limited by a few millimeters,
air density fluctuations between the two squeezed vacua are
negligible, so no phase locking is required.

Concurrent interaction in second-order nonlinear media of
multiple configurations has also been used in the continuous
variable domain, albeit in configurations different from ours.
In particular, the Pfister group has demonstrated concurrent
second-harmonic generation from all three possible nonlinear-
ities in KTiPO, using a nonlinear crystal with a complex
periodic poling structure [22,23]. Subsequently, they used such
a crystal to prepare quadripartite cluster entanglement in the
optical frequency comb [24]. In 2014, a more complex cluster
entanglement has been achieved with two periodically poled
crystals placed in two waists of an optical parametric amplifier
cavity [25].

In our experiment, both down-conversion processes take
place in periodically poled potassium titanyl-phosphate crystals.
The first and second crystals are phase matched for type-0 de-
generate SPDC into the vertical and horizontal polarization
modes, respectively. The phase matching is aligned by the in-
dependent angle and temperature control of each crystal. The
crystals are pumped in a single-pass manner with frequency-
doubled pulses at A = 390 nm, generated by a Ti:sapphire laser
with a repetition rate of 76 MHz and a pulse width of 1.5 ps
[26]. The average power of the pump field is 80 mW.
The polarization of the pump field is diagonal, so the pump
intensity is distributed equally to both nonlinear processes.
After the crystals, the pump field is eliminated by an interfer-
ence filter.

The length of the crystals along the beam is 1 mm, as shown
in Fig. 1. Both crystals are set in the waist of the focused pump
beam with the Gaussian radius of wy, = 12.4 pm, with a cor-
responding Rayleigh range being zz = 7w} /A = 1.25 mm.
The distance between the crystals is 0.45 mm, so that their
centers are 0.72 mm away from the beam waist; the beam
width at the center points is then 1.15u.

After the second crystal, two orthogonally polarized
squeezed vacua, sharing the same spatial mode, are prepared.
To characterize these states, the modes are separated by a polar-
izing beam splitter (Fig. 1) and subjected to homodyne mea-
surement [27]. The variance of the quadrature data from both
squeezed states as a function of phase and time is shown in
Fig. 2(a). The sinusoidal behavior of the variance is due to lin-
ear variation of the optical phase @ of the local oscillator [28].
This behavior is modeled by a perfect squeezer with a squeezing
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Fig. 1. Schematic of the setup. Both crystals are aligned for collin-
ear, type-0 phase-matching conditions. PBS, polarizing beam splitter.
The axes illustrate the longitudinal beam waist behavior and the
positioning of the crystals with respect to the waist. Other elements
are not drawn to scale.

Vol. 42, No. 1 / January 1 2017 / Optics Letters 133

parameter ¢ followed by a loss channel with transmissivity 7, in
which the quadrature variance is given by [29]

1-
(X2) = g(cosh 2¢ - cos 26 sinh 20) + Tn (2)

The single-mode experimental data can be fit with this equa-
tion using { = 0.44, n = 0.52 [Fig. 2(a)]. The latter figure
arises from the cumulative effect of the 85% quantum effi-
ciency of the homodyne detector [27] (including the effect
of electronic noise [30]), imperfect mode matching between
the signal and the local oscillator (90%) and linear losses,
partially associated with gray tracking (85%). An additional ef-
fective loss arises from the undesired spatial and spectral cor-
relation of the photon pairs produced in pulsed SPDC [31].

The single-mode squeezed states generated in the two crys-
tals are delayed with respect to one another due to the differ-
ence in group velocities of the pump and the signal. The
experimentally observed delay of 0.58 mm is in agreement with
the prediction based on the Sellmeyer model [32]:

v, = 0.41c, vy, = 0.52¢, (3)

with ¢ being the speed of light in vacuum. To compensate for
that difference, we retard the vertical polarization component of
the pump with respect to the horizontal one, using a birefrin-
gent calcite crystal of a length of 3.6 mm. The birefringence of
calcite depends on its orientation. We rotate the crystal around
the vertical axis, as shown in Fig. 2(a), to optimize the delay
between the polarization components of the pump and to
set the phase between the two squeezed vacua to 7/2.
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Fig. 2. (a) Variances of the initial, orthogonally squeezed single-
mode vacua as a function of time for a linearly varying quadrature
phase @ before the interference. Horizontally (vertically) polarized
modes: open (filled) circles. The smaller size symbols in the plots cor-
respond to the vacuum state. The lines show the theoretical prediction
(2) with ¢ = 0.44, detected with an efficiency of 52%. Data are nor-
malized so that the vacuum noise level is 0.5. (b) Variances of the
EPR-state quadratures as a function of time. In this experiment,
the phase of one of the LOs is varied, 6, in (4). Circles, individual
quadratures; diagonal/vertical crosses, sum and difference quadratures.
The lines show the theoretical prediction for the EPR state (4) with
¢ = 0.44 detected with a 50% efficiency. The minimum difference-
quadrature variance is 0.36, which corresponds to 1.4 dB of two-mode
squeezing.
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Fig. 3. Reconstructed EPR state (left) and theoretical expectation,
based on the experimental input single-mode squeezed states (right).
(a) Density matrices in the Fock basis. (b) Correlated probability
densities for the position quadratures. The fidelity between the two
states is 98%.

The two squeezed states are subsequently brought to inter-
ference. The latter is realized in the polarization basis by means
of a half-wave plate with its optical axis at 22.5° to horizontal,
and a quarter-wave plate for fine tuning. The interfered modes
are spatially separated on the polarizing beam splitter and
directed to homodyne detectors [27].

The quadrature variances from each individual mode are
shown in Fig. 2(b) in blue and purple. Both exhibit approxi-
mately constant variance as expected for the EPR state, whose
individual modes considered separately are in a thermal state
[29]. The sum- and difference- quadrature variances, shown
in green and orange, demonstrate opposite phase-dependent
variance characteristics of the EPR state. The theoretical expect-
ation for these variances is [13]

<[X1,91 F X2,9212]>
2

= g[cosh(ZC) + cos(0, + 6,) sinh(2¢)] + 1_;'7 (4)

and the best fit is obtained with { = 0.44, # = 0.50. The small
decrease in the efficiency with respect to the single-mode case is
attributed to the non-ideal interference of the input states,
which also explains the residual phase dependence of the
individual quadrature variances, visible in Fig. 2(b). Note that,
compared to the single-mode squeezed vacua [Fig. 2(a)], the
two-mode quadrature variances oscillate at half-frequency,
as expected from Egs. (2) and (4).

The result of two-mode homodyne tomography of the
EPR state [33] is presented in Fig. 3, left. The mean photon
population of each mode is 0.11, which is in agreement with
the expected value 7¢? = 0.10. The right side of Fig. 3 shows
the theoretical expectation [29] with the squeezing and
efficiency correction for n = 0.5. Its fidelity with the experi-
mentally reconstructed state is 98%, the discrepancies being
on the order of state reconstruction uncertainties [28].

In summary, we have demonstrated the preparation of the
two-mode squeezed vacuum state in a series of two type-0 non-
linear crystals positioned back-to-back in a waist of the pump
beam. The demonstrated technique can be seen as continuous
variable analog of the method for generating polarization-
entangled photon pairs [21]. It takes advantage of the relative
strength of optical nonlinearity in type-0 SPDC while eliminat-
ing the need for critical phase matching and the phase locking
of two independent squeezers. It can be adapted to cavity- or
fiber-based optical parametric amplifier schemes.
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