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Complete temporal characterization of a single photon

Zhongzhong Qin1,2, Adarsh S Prasad1, Travis Brannan1, Andrew MacRae3, A Lezama4 and AI Lvovsky1,5,6

Precise information about the temporal mode of optical states is crucial for optimizing their interaction efficiency between themselves

and/or with matter in various quantum communication devices. Here we propose and experimentally demonstrate a method of

determining both the real and imaginary components of a single photon’s temporal density matrix by measuring the autocorrelation

function of the photocurrent from a balanced homodyne detector at multiple local oscillator frequencies. We test our method on single

photons heralded from biphotons generated via four-wave mixing in an atomic vapor and obtain excellent agreement with theoretical

predictions for several settings.
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INTRODUCTION

Single photons and single photon qubits are among the foundations of

most quantum optical information processing techniques such as

cryptography,1 teleportation,2 repeaters3 and computing.4 Many of

these applications require the photons to have a well-defined, pure

modal structure. Possessing precise information about that structure

is essential for quantum optical technology.

An approximate guess of a photon’s mode can be inferred theoret-

ically from the characteristics of the source,5–9 but this information is

not always available or reliable. For example, this approach would not

work for photons sent in by a remote party in a communication sche-

me, or for photons from an incompletely characterized mesoscopic

source. Therefore, it is important to have a technique for precise

characterization of a photon’s mode experimentally. While such tech-

niques are relatively well developed for spatial modes,10,11 their exten-

sion into the temporal domain is challenging.

One approach to studying the temporal structure of the photon

would be to look at the photon detection event statistics as a function

of time. For example, this approach has been used to study the timing

of coherent double Raman scattering from an atomic ensemble.12

Further insight into the photon preparation quality can be gained

by studying time-dependent photon counting autocorrelation statis-

tics.13 However, these techniques provide no information about the

phase coherence between different segments of the photon’s temporal

mode.

Complete information about a photon’s temporal properties can

be obtained by studying its interference with a classical field. Polycar-

pou et al. used adaptive waveform shaping of local oscillator (LO)

pulses14 to heuristically find the LO temporal mode that maximizes

the efficiency of homodyne detection of the photon. This occurs when

the LO temporal mode matches that of the signal, enabling measure-

ment of that mode. However, physical shaping of LO pulses is quite

sophisticated experimentally. Furthermore, this technique has only

been demonstrated for pure temporal modes.

An alternative approach to measuring the spectral density matrix of

the photon has been proposed in Ref.15. It is based on bringing the

photon into interference with a pair of weak coherent pulses with

varied separation between them. However, this method can only be

applied to ultrashort pulses whose width is a few optical cycles.

Furthermore, the experimental test in Ref.15 has been performed on

a thermal state rather than the single photon state.

For a photon with bandwidth resolvable by detection electronics,

the time domain statistics may be measured directly and in real time by

analyzing the time-dependent statistics of the homodyne detector’s

output photocurrent with a continuous-wave LO. MacRae et al.16,17

showed that the autocorrelation function of this photocurrent esti-

mates the real part of the density matrix defining the photon’s tem-

poral mode. Subsequently, this approach has been utilized for the

‘Schrödinger cat’ and two-photon Fock states.18

However, this method does not yield any information about the

imaginary part of the photon’s temporal density matrix (TDM). In

this paper we present an experimental technique of polychromatic

optical heterodyne tomography, which relies on acquiring the autocor-

relation data of the homodyne photocurrent at multiple LO frequen-

cies. The method enables us to determine both the real and imaginary

parts of the photon’s TDM, or, equivalently, both its amplitude and

phase, thereby completely characterizing its temporal state. It works

equally well for pure and mixed temporal modes.
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MATERIALS AND METHODS

The (pure) temporal mode of a photon is defined by annihilation

operator

Âw~

ð?
{?

ât w(t)dt ð1Þ

where w(t) is the temporal mode function (TMF) and ât represents the

instantaneous annihilation operator at time t. Although single

photons associated with a certain moment in time are ill-defined,

treatment (1) is approximately valid as long as the spectral width of

the photon is much less than its frequency.19 A single photon state in

this mode is then given by 1w

�� �
~Â

{
w 0j i~

Ð?
{? w�(t) 1tj idt , where

1tj i~â
{
t 0j i.

The digital nature of the data acquisition system used in our experi-

ment compels us to represent the temporal modes in terms of discrete

time bins. The single photon state in temporal mode w(t) can then be

approximately expressed as 1w

�� �
~
P

j w�(tj) 1j

�� � with
P

j w(tj)
�� ��2~1.

Here tj is the time associated with the jth bin and 1j

�� � is the state

containing one photon in the top-hat temporal mode associated with

the jth bin and vacuum in all other bins. The density operator of the

photon is then represented as
P

mn rmn 1mj i 1nh j where rmn is the

TDM.

The homodyne current for the jth time bin I(tj) is proportional to

the quadrature

X̂j~(âj e
{ihj zâ

{
j eihj )

. ffiffiffi
2
p

ð2Þ

where hj 5 dv?tj 1 h0 is the optical phase difference between the LO

and the signal. Here dv is the frequency detuning between the LO and

the signal and h0 the LO relative phase at t 5 0. The autocorrelation

matrix for the homodyne current is then

I(tj)I(tk)
� �

! X̂j X̂k

� �
~Tr r̂X̂j X̂k

� �
~
X
mn

rmn 1nh jX̂j X̂k 1mj i
ð3Þ

where each matrix element can be evaluated using Equation (2) as

1nh jX̂j X̂k 1mj i~
1

2
e{idv(tk{tj )dkmdnjzdjkdnmze{idv(tj{tk )djmdnk

� �
ð4Þ

Note that Equation (4) does not depend on h0 due to the phase

uncertainty of Fock states.

From Equations (3) and (4), one can obtain

X̂j X̂k

� �
~

1

2
djkzAjk ð5Þ

The first term in Equation (5) corresponds to the autocorrelation

matrix for the vacuum. The second term, which we call the reduced

autocorrelation matrix, is directly related to the photon’s TDM:

Ajk~Re rjk

h i
cos dv(tj{tk)
� �

zIm rjk

h i
sin dv(tj{tk)
� �

ð6Þ

If the LO frequency is same as that of the signal, i.e., at dv 5 0, the

autocorrelation matrix depends only on the real part of the TDM.

However, by using dv ? 0 one obtains access to its imaginary part.

In a realistic experiment, the photon being tested may experience

losses, resulting in admixture of the vacuum into the state detected.

Our technique would still apply to this case, but the second term would

enter Equation (5) with the coefficient equal to the transmissivity of the

lossy element. For high losses, acquisition of larger quantities of data

may be necessary to reduce the statistical uncertainties (detailed further

in the Supplementary Material).

Our experimental scheme for creating the single photon state and

measuring the autocorrelation matrix is shown in Figure 1. We use

coherent double Raman scattering (four-wave mixing) in an ensemble

of L-type atoms to generate a two-mode squeezed state in a non-

degenerate phase-matched configuration.17 A hot 85Rb vapor cell is

pumped by a 1 Watt laser beam at 795 nm derived from a continuous-

wave Ti:Sapphire laser. The signal and idler beams are spatially sepa-

rated from the pump, and a specific spatial mode is selected in the idler

channel using a single-mode fiber. Subsequently, the idler channel is

subjected to spectral filtering by means of a lens cavity (C1) of a

55 MHz bandwidth20 and a conventional Fabry–Perot cavity (C2) of

bandwidth c/2p 5 7 MHz. The usage of two cavities with incommen-

surate free spectral ranges ensures that the combined spectral filter has

a single transmission peak of 7 MHz width. This results in a heralded

photon with a temporal mode that can be easily resolved by our

homodyne detector with a 100 MHz bandwidth.21

The idler beam is then coupled to a PerkinElmer single photon

counting module (SPCM) with a dark count rate below 100 Hz.

Both cavities are maintained at a stable frequency by using an align-

ment beam which is unblocked every few seconds to monitor and

readjust the cavity resonance frequency. Detection of an idler photon

projects the signal onto a single photon in a well-defined spatiotem-

poral mode conjugate to the idler. This signal channel is mode-

matched with a continuous-wave LO (18 mW) for homodyne detec-

tion.21 The LO is derived from a diode laser that is locked and phase

stabilized with respect to the pump using an optical phase-lock loop.22

A click from the SPCM in the idler channel acts as the trigger for the

measurement of the signal. The homodyne photocurrent is recorded

for 360 ns around the trigger point as reference with a time binning of

2 ns. For each LO detuning, the autocorrelation matrix (3) of the

homodyne photocurrent is obtained by taking an average over 2 mil-

lion traces.

Theoretically, the data corresponding to two LO detunings would

constitute a quorum for the temporal mode reconstruction. Experi-

mentally, however, we take data at eight different detunings to avoid

the situation where the sinusoids in Equation (6) approach zero for all

detunings simultaneously and to enhance the statistical accuracy of the

recovered r̂.

Once the autocorrelation matrices have been acquired, we process

them to eliminate the vacuum term in Equation (5), as well as any

contributions from the DC (direct current) bias in the homodyne

photocurrent and thermal background. These contributions are not

correlated with trigger events, and are only dependent on the differ-

ence tj 2 tk. They can therefore be evaluated as the mean autocorrela-

tion value along lines tj 2 tk 5 const for the data points acquired

significantly after the trigger pulse where no signal photon is expected.

Subtracting them from the autocorrelation matrix yields the

reduced autocorrelation matrix (Figure 2) (detailed further in the

Supplementary Material).

The TDM can now be determined by solving Equation (6) for each

pair (j, k). However, such direct approach does not ensure positivity

and normalization of the reconstructed density operator. To incorp-

orate these a priori constraints into the reconstruction, we implement

a more sophisticated iterative optimization algorithm. The algorithm

uses the eight experimental reduced autocorrelation matrices as the

training set. The difference between the experimental left-hand side of

Equation (6) and the right-hand side of that equation evaluated from

the estimated TDM, squared and summed over all pairs (j, k) and
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all LO frequencies, is used as the cost function. Iterations utilize the

diagonal representation of the TDM: r̂~
P

i pi yij i yih j. In the first

step of each iteration, the eigenvalues pi are adjusted to minimize the

cost function while keeping them real, non-negative and totalling 1. In

the second step, the eigenvectors yij i are optimized by pairwise unit-

ary transformations. The process is repeated until the cost function

asymptotically converges to give the best fit of the TDM.

The theoretically expected mode is calculated from the properties of

our experimental setup. The primary element determining the mode of

the heralded photon is the narrowband filter cavity C2 in the idler chan-

nel. Additionally, the mode’s bandwidth is limited by the ,50 MHz

gain bandwidth of the four-wave mixing process used to generate the

biphotons. This effect is taken into account in theoretical plots in

Figures 2 and 3, however we neglect it in the theoretical expressions below

for clarity.

The Lorentzian filter C2 in the idler channel produces a signal

photon with the TMF in the shape of a rising exponential that termi-

nates at the trigger event (detailed further in the Supplementary

Material):

w(t)~
ffiffiffi
c
p

ect=2H({t) ð7Þ

where H(t) is the Heaviside step function and c 5 2p 3 7 MHz is the

narrowband cavity linewidth. This exponentially rising mode is

of particular significance for applications such as high-efficiency

excitation of an atom23,24 or a resonator25,26 with a single photon.

To our knowledge, this is the first demonstration of complete recon-

struction of this mode.

RESULTS AND DISCUSSION

Figure 3a shows the TDM obtained by iterative reconstruction from

the experimental data along with the theoretical predictions. The pri-

mary eigenvector of the TDM has a corresponding eigenvalue almost

45 times larger than the second largest one indicating a nearly pure

temporal mode. The TDM is primarily real and matches well the theo-

retical prediction.

Next, we demonstrate the reconstruction of a temporal mode with a

nonvanishing imaginary component. To this end, we induce a virtual

frequency shift by redefining the signal-LO detuning according to dv9

5 dv 1 D when reconstructing the TDM from Equation (6). The

theoretically expected TMF and TDM then become:

wD(t)~w(t)eiDt ð8Þ

rD(t ,t 0)~r(t ,t 0)eiD(t{t 0) ð9Þ

The TDM reconstructed from the experimental data using the effec-

tive modulation frequency of D 5 2p 3 5 MHz is shown in Figure 3b.

While the purity of the temporal mode is maintained, the recon-

structed density matrix now has a significant imaginary component,
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Figure 1. (a) Schematic of the experimental setup. The signal (blue) goes to the homodyne detector, whereas the idler (orange) passes through C1 (55 MHz) and

C2 (7 MHz) before detection via the SPCM. The EOM between C1 and C2 is optional. (b) The 85Rb three-level L system, with the fields’ configuration shown.

(c) Reconstruction of the state of the electromagnetic field in the temporal mode determined experimentally (unmodulated case). Left to right: experimental quadrature

distribution (blue) overlaid with that for the vacuum state (red); diagonal elements of the Fock-basis density matrix; Wigner function. The single-photon fraction is

52.9%. C1, C2: filter cavities; EOM: electro-optic modulator; SPCM: single photon counting module.
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demonstrating the ability of our technique to accurately reconstruct

states with complex temporal modes.

This example is practically relevant in a situation when one does not

know the frequency of the photon precisely. In this case, heterodyne

measurements at different LO detunings relative to a given reference

(defined by the point dv 5 0) will provide full information about the

mode, including the spectral offset of the photon with respect to that

reference.

Finally, we illustrate the ability of our experimental technique to

reconstruct the TDM in the case of a mixed state. We phase modulate

the signal photons at a frequency vm 5 2p 3 20 MHz, larger than the

spectral width of C2. This is achieved by passing the idler photons

through an electro-optic modulator (EOM), with its optical axis

oriented along the photon’s polarization.27 This leads to a TMF

wEOM(t, hm)5
ffiffiffi
c
p

ect=2eib sin (vmtzhm)H(2t), where b 5 1.1 is the modu-

lation index and hm is the phase of the modulating voltage at the time

when the idler photon is detected. Because the idler photon detections

occur at random times, hm is randomized, leading to the following

non-pure TDM:

rEOM
t ,t 0 ~

1

2p

ðp
{p

wEOM(t ,hm) wEOM(t 0,hm)
� ��

dhm

~ce
c(tzt 0 )

2 H({t)H({t 0)J0 2b sin (
vm(t{t 0)

2
)

� 	 ð10Þ

where J0 is the Bessel function of the first kind.

The experimentally reconstructed TDM is shown in Figure 3c. The

mixed nature of the density matrix is evident from the distribution of

eigenvalues, with the ratio of the first and second eigenvalues being

only around 2. Due to the modulation phase randomization, the ima-

ginary part of the density matrix is zero.

The observed artifacts in the reconstructed photon modes can be

attributed to the finite bandwidth, or non-instantaneous response, of

the homodyne detector. This results in the smearing of the acquired

autocorrelation matrix. This effect is particularly significant where this

matrix has sharp features, such as the trigger event where the photon

pulse instantly terminates according to Equation (7), as seen in

Figure 3a and 3b. The fast modulation of the TMF such as in

Figure 3c has a similar effect on the reconstructed mode over its entire

duration, resulting in a spurious nonzero imaginary part. The obser-

ved artifacts, however, do not significantly degrade the fidelities of the

experimentally obtained TDMs with respect to the theoretically

expected ones. These fidelities, defined as F~Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rexp
p

rth
ffiffiffiffiffiffiffiffi
rexp
pph i

with the subscripts indicating theory versus experiment, are found to

be 0.97, 0.94, and 0.93, respectively, for the three cases of Figure 3.

Using the absolute value of the TMF obtained for the primary mode

of the unmodulated case (Figure 3a), we reconstruct the quantum

state of light in that mode in the Fock basis akin to Ref.17, obtaining

the single photon efficiency of r11 5 52.9%. The corresponding

Wigner function, exhibiting negative values at the phase-space origin,

is plotted in Figure 1c along with the acquired quadrature distribution

and the reconstructed density matrix.

CONCLUSION

We have developed and experimentally demonstrated polychromatic

optical heterodyne tomography, a robust method for complete experi-

mental determination of the temporal properties of a single photon

directly from the time-resolved photocurrent statistics of a balanced
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corresponding to the measurement setting without modulation. The trigger photon arrives at t 5 155 ns.
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homodyne measurement. The method enables the extraction of a

temporal mode which in general may be complex and can have mul-

tiple frequency components. Accurate detection of the temporal mode

is key for the proper mode matching required by many quantum com-

munication protocols.

Our method permits straightforward extension to states other than the

single photon Fock state akin to Ref.18 provided that the state in

question occupies a well-defined spatiotemporal mode. On the other

hand, the single photon state is special in that it can be directly associated

with the photon annihilation operator of a certain optical mode or a

mixture thereof. The problem of defining the optical mode(s) for a gene-

ral quantum optical state is a subject of a separate study.

Although the technique described in this work requires the fre-

quency spectrum of the photon’s temporal mode to be sufficiently

narrowband so its temporal structure can be resolved by the homo-

dyne detector, one can envision ways to lift this restriction. For exam-

ple, if the photon is produced in an ultrashort pulsed mode, one can

extend it in time using a dispersive element such as an optical fiber,

and perform time-resolved homodyne detection using a matched

chirped LO. The time-domain correlations of the homodyne photo-

current will then correspond to quantum coherences between com-

ponents of the photon spectrum.
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