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Abstract
We report a technique for experimental characterization of anM-mode quantumoptical process,
generalizing the single-mode coherent-state quantum-process tomographymethod [1, 2]. By
measuring the effect of the process onmulti-mode coherent states via balanced homodyne
tomography, we obtain the process tensor in the Fock basis. This rank- M4 tensor, which predicts the
effect of the process on an arbitrary densitymatrix, is iteratively reconstructed directly from the
experimental data via themaximum-likelihoodmethod.We demonstrate the capabilities of our
method using the example of a beam splitter, reconstructing its process tensorwithin the subspace
spanned by the first three Fock states. In spite of using purely classical probe states, we recover
quantumproperties of this optical element, in particular theHong–Ou–Mandel effect.

1. Introduction

Precise understanding of the performance of individual quantum systems is a key requirement for the
development of compound devices, e.g. quantum computers or secure communication networks. This
requirement gives rise to the problemof experimentally characterizing quantum systems as ‘black boxes’:
learning to predict their effect on arbitrary quantum states bymeasuring their effect on a limited number of
‘probe’ states. The art of solving this problem is referred to as quantumprocess tomography (QPT).

A straightforward approach toQPT consists ofmeasuring the action of the black box on a set of states whose
density operators form a spanning set in the space of all operators over a particularHilbert space. Because any
quantumprocess is a linearmapwith respect to density operators, this information is sufficient to fully
characterize the process [3].However, such a directmethod typically requires a large set of difficult-to-prepare
probe states, and is consequently restricted to systems of very low dimensions. Another possibility is the ancilla-
assistedmethod [4] utilizing an input state that is a part of a fully entangled state in a largerHilbert space.
Although in this case only a single input is necessary thanks to the Jamiolkowski isomorphism [5], both
preparation of this state and tomography of the output state is, again, complicated, which dramatically limits the
practicality of themethod.

In application to optics, the coherent-state quantumprocess tomography (csQPT) [1, 6, 7] offers a practical
solution.While being amember of the directmethods family described above, this technique uses only coherent
states α∣ 〉 for probing the process  , relying on the fact that these states span the space of operators over the
opticalHilbert space (the optical equivalence theorem) [8, 9]. The prediction for the output  ρ( ˆ)of the black
box in response to to an arbitrary input state ρ̂ then involves integration of themeasured output states
 α α∣ 〉〈 ∣( ), weighted by correspondingGlauber–Sudarshan function αρP ( )ˆ , over the phase space. A similar
coherent-state based approach can also be used for the tomography of quantummeasurements [10, 11].While
being a case of the directmethod described above, csQPT is relatively easy to implement in an experiment, since
coherent states are readily obtained from lasers, and their amplitudes and phases are easy to control.

On the other hand, αρP ( )ˆ is a generalized function, typically highly singular. Therefore the process

reconstruction involving that functionmay either suffer from inaccuracies or involve an unreasonably large
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number of required probe states.Moreover, the procedures proposed in [1, 7] evaluate each element of the
process tensor individually, and can hence lead to unphysical (non-trace preserving or non-positive) process
tensors.

The above shortcomings are absent in amethod known asmaxLik csQPT,which exploits the Jamiolkowski
isomorphism to reduce theQPTproblem to thewell-studied problemof the quantum state estimation, and
applies the likelihoodmaximization technique to estimate the process tensor [12]. In this way, one can perform
the reconstructionwithout leaving the physically plausible space.MaxLik csQPThas been proposed in [2] and
successfully realized for nondeterministic singe-mode processes [13, 14].

In this work, we expand csQPTbeyond the ‘single input—single output’ case, which covers only a few of
practically relevant quantumoptical black boxes. The need for our study is dictated by the growing fields of
quantumoptical communication and logic, which are impossible withoutmultimode processing. Examples
includemultimode quantummemories [15, 16] and logic gates for processing photonic qubits [17, 18], to name
a few.

Although our experiment is in the optical domain, the theory andmethodology of csQPT can be employed
on amuch broader scale. It applies to any physical systemwhoseHamiltonian is equivalent to that of the
harmonic oscillator—such as superconducting cavities, atomic spin ensembles and nanomechanical systems. In
all of these, coherent states are the simplest to prepare and are hencemost suitable as probe states inQPT.

2.MultimodemaxLik csQPT

Ourmethod generalizes the single-modemaxLik csQPT approach [2], whichwe briefly outline below.Wework
in the Fock basis and represent a generalM-mode quantumprocess  by a tensor of rank M4 whichmaps the
input densitymatrix into the output one:

 ∑ρ ρ ρ= =( )j k , (1)j k n m j k
n m

n m,
out in

, ,
,

,
in

where underlined symbols ∣ 〉 = ∣ 〉i i i,..., M1 refer tomultimode Fock states. In practice, the infinite dimensions
of both input  and output  optical Hilbert spaces are truncated to the +N 1 lowest Fock states, so that

∈i N0 ...k .
In the experiment, the black box is testedwith a set ofM-mode coherent probe states α α α∣ 〉 = ∣ 〉,..., K1 . For

every probe state, the output channels are examined by homodynemeasurements, which gives a set of
quadrature data θX{ , }i i , where θ θ θ= ( ,..., )i i iM1 is the set of local oscillator (LO) phases associatedwith the
ithmeasurement.

To provide enough information about the process, the probe states should cover the volume of interest in the
multimode phase space corresponding to the energies up to the chosen photon truncation numberN. Because
themean quadrature variance of theN-photon state equals +N 1 2, this volume corresponds to a M2
-dimensional hypersphere of radius +N 1 2 . On the other hand, a singlemultimode set of coherent states
corresponds to a hypersphere of radius 1 2 . Therefore the number of the necessary probe states can be
estimated as +N(2 1)M .

Our process reconstructionmethod relies on the Jamiolkowski isomorphism, relates the superoperator  to
an operator Ê on the product of  and  spaces:

∑= ⊗E n m j kˆ . (2)
n m j k

j k
n m

, , ,

,
,

In this way, the process reconstruction is reduced to amore familiar problemof state reconstruction. The
physicality of the process  requires it to be completely positive and trace preserving. These conditions are
equivalent to the requirement that the corresponding Jamiolkowski operator be positive semidefinite and that

 =E ITr [ ˆ] ˆ , where Î is identity operator. The latter condition is readily extended to conditional (trace-
reducing) processes as discussed in [2, 13].

Themaximum likelihood reconstruction consists offinding an operator Ê whichmaximizes the probability
of obtaining the harvested data set θX{ , }i i .Mathematically, this is equivalent tomaximization of the functional

 ∑ α Λ= −( ) ( )E p Eˆ ln , i Tr ˆ ˆ , (3)
i j

j

,

⎡⎣ ⎤⎦

where Λ̂ isHermitianmatrix of Lagrangemultipliers incorporating the trace-preservation condition, and

α α α Π α α Π= = ⊗θ θ( ) ( )p i X E X( , ) Tr ( ) ˆ Tr ˆ ˆ (4)i ii i

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
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is probability of registering ith outcome for the probe state α∣ 〉, and Π θ θ= ∣ 〉〈 ∣θ X X Xˆ ( ) , ,i i i i ii
is the projector

corresponding to the ithmeasurement outcome. For deterministic processes, operator Ê maximizing the
likelihood (3) satisfies the extremal condition [2, 12]

Λ Λ= − −
E RERˆ ˆ ˆ ˆ ˆ ˆ , (5)

1 1

where

∑
α α Π

α
=

⊗ θ ( )
( )

R
X

p
ˆ

ˆ

, i
, (6)

i j

j j i

j,

* *
i

 Λ = ⊗( )RERˆ Tr ˆ ˆ ˆ ˆ . (7)
1 2⎡⎣ ⎤⎦

Equations (5)–(7) can be solved iteratively, starting from anunbiased   = ⊗Ê ˆ dim
(0)

. Due to the

Hermitian nature of operators R̂ and Λ̂, Ê remains positive semidefinite at each iteration. Togetherwith the
trace preservation constraint, this assures physicality of the reconstructed process. The likelihood functional (3)
is convex over the space of positive semidefinite operators, which eliminates the possibility of the iteration
process stopping at a localmaximum.

3. Tomography of beam splitting

The process of choice for testing the capability of ourmethod is beam splitting. Its paramount importance in
quantumoptics needs no proof: all linear optical devices (interferometers, waveguide couplers, loss channels,
etc) are equivalent to single beam splitters (BSs) or sets thereof. Any single BSwas recently shown to be generator
of universal linear optics [19]. Accompanied by single photon sources and photon detectors, BSs enable
quantum computation [20]. In some form, a BS is present in any imaginable optical setting. In addition, the BS
Hamiltonian is paramount in interfacing quantum information between harmonic oscillator systems of
different nature, e.g. between an electromagneticmode and either an atomic ensemble [21], or an
electromagneticmode and a nanomechanical oscillator [22].

Although the operation of the BS is consistent with classical physics (coherent state inputs lead to coherent
state outputs, and vice versa), its response to nonclassical input gives rise to quantumphenomena. A striking
example is theHong–Ou–Mandel effect: when two photons impinge upon a symmetric BS, they appear only in
pairs at one of its outputs [23]. Our technique reveals this quantum effect in spite of using only classical states in
measurements.

The BS has previously been characterized byQPT in the role of a Bell-state filter [24] and an amplitude
damping channel [25]. In both these studies, tomography of the BS as a process on amultimodeHilbert space
has been incomplete: limited to a specific photon number subspace of that space. Our technique is free of this
shortcoming. It allows one to predict output of the process for any arbitrary Fock states and their superpositions
in the input, up to a certain cut-off photon number.

Our technique is different from a recently developedmethods for characterizing linear optical networks [26]
andGaussian processes [27] in that itmakes no assumptions about the content of the black box, in particular
about its Gaussianity or linear-optical character. Although for the demonstrationwe do use a device which is
both linear andGaussian, our approach can be successfully applied to amultimode process of any nature.

The light source in our experiment is amode-locked Ti:Sapphire laser (CoherentMira 900), which emits
pulses at 780 nmwith a repetition rate of 76MHz and a pulse width of∼1.8 ps. In order to stabilize and control
the relative phases of the inputs and outputs, we realize symmetric beam splittingwith respect to the horizontal
and vertical polarizationmodes in the same spatial channel,marked 1 infigure 1. The polarizations aremixed
using an electroopticalmodulator (EOM)with its optical axis oriented at 45° to horizontal and a λ 4 voltage
applied to it. A polarizing beam splitter (PBS) subsequently separates the outputmodes spatially for detection.
Our black box is thus implemented by combination EOM+PBS. In theHeisenberg picture, this process has the
form

= + −
− +

a

a

a

a

1

2
1 i 1 i
1 i 1 i

, (8)1
out

2
out

1
in

2
in

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where a1,2
in,out are photon annihilation operators of the input and outputmodes. The relative amplitudes and

phases of the input coherent states are set using a λ λ+2 4 waveplate pair.
Themeasurement of the output is performed using balanced homodyne detectors [28] in both output

channels. To this end, we introduce two LOs in orthogonal polarizations in spatialmode 2, so the central PBS
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directs them into the two output spatial channels (figure 1). In each output channel of the PBS, we thenfind the
signal and LO in orthogonal polarizations. For homodyne detection, these polarizations aremixed in each
channel using a combination of a λ 2 plate oriented at °22.5 to the horizontal and an additional PBS. The
relative phases of the LOs can be controlled by twowave plates, while their commonphase is slowly scanned
using a piezo-mountedmirror in the signal channel.

4. Evaluating the process tensor

The process reconstruction is simplified by its invariancewith respect to the global phase shift. That is, if both
input phases are shifted by some phase θ, sowill the output state. This invariance is a consequence of the
symmetric nature of time: a global phase shift by θ is equivalent to a shift in time by θ ω, whereω is the optical
frequency. If the black box is not connected to any external clock (such as in our case), it will respond to a signal
that is shifted in time by the same amount in the output. The effect of phase invariance on the process tensor can
be determined from the fact that a phase shift of bothmodeswill transformdensitymatrix elements according to

ρ ρ

ρ ρ

→

→

θ

θ

+ − −

+ − −

( )

( )

e ,

e .

n n m m n n m m
n n m m

j j k k j j k k
j j k k

, , ,
in

, , ,
in i

, , ,
out

, , ,
out i

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2
1 2 1 2

Reconciling this with equation (1), wefind that only elements such that + − −j j k k1 2 1 2

= + − −n n m m1 2 1 2 can be nonzero in tensor  j k
n m

,
, .

The process reconstruction requires knowledge of the LOphase vector θ i, = …i M1, , at eachmoment in
time both for the input and output of the black box. For a general phase-invariant process, this is equivalent to

−M2 1unknown phase relations. This requirementmakes amarked difference between the reconstruction of
single-mode andmulti-mode processes. In the single-mode case,many relevant processes exhibit intensity-
independent phase behavior, which, in combinationwith the phase invariance, allows one to disregard phase
relations between the input and outputmodes altogether. Inmulti-mode processes, however, this is almost
always not the case: even in the relatively simple case of the present work, total phase control is essential for
successful reconstruction.

We acquire the phase vector θ i by periodically setting the EOMvoltage to zero, so the black box becomes the
identity process and the quadraturemeasurements correspond to the input states. This allows us tomonitor all
three required phase relations in real time. The inverse sine of themean quadrature value for each set yields the
differences θ θ−i iin, of the LO and input state phases for bothmodes.

The switching between the BS and identity processes is performedwith a period of 0.1 s, which ismuch faster
than the characteristic time of phasefluctuations caused by airmovements in the two interferometer channels.

Figure 1.Experimental setup. The BS process (encompassed by a green dashed line) is implemented in the polarization basis by an
EOM towhich a quarter-wave voltage is applied, and subsequent PBS. The input channels of the process are the horizontal and
verticalmodes of spatialmode 1; the output channels are the horizontal polarization of spatialmode 3 and the vertical polarization of
spatialmode 4. The LOs for homodynemeasurements are incident onto the PBS in the two polarizationmodes of spatialmode 2,
thereafter emerging in the vertical polarization of spatialmode 3 and the horizontal polarization of spatialmode 4.
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In this way, the evaluated LOphases can be translated to the process outputmeasurements by taking into
account the linearmotion of the piezo.

We acquire a total of 48 sets of 106 quadrature samples for three different relative phases of LOs: 0.67, 2.64
and 5.29 rad and, in addition to the vacuum, 16 pairs of input coherent states, obtained by setting eachwaveplate
at ° ° °0 , 15 , 30 and 45°. Each pair of the input states has the same total energy corresponding to 0.9 photons.
This set of probe states is sufficient to reliably reconstruct the process up to a cut-off photon number of 2.

We implement a two-step reconstruction process as prescribed by [2]. In thefirst step, we artificially inflate
the reconstructionHilbert space by choosing the cut-off point atN = 4. This is necessary to ensure that both the
input probe states and the output states arewell accommodated in that space, which is required for the proper
function of the reconstruction algorithm.However, the fraction of 3- and 4-photon terms in the Fock
decomposition of the probe coherent states is relatively low, and so is their contribution to the log-likelihood
functional. As a result, the corresponding terms of the process tensor are not estimated accurately. To eliminate
these inaccuracies, we truncate the reconstructed tensor to a lowermaximumphoton number ′ =N 2 after the
iterations have been completed [2].

The phase invariance property of the process kills about 90% of ≈ ×4 105 tensor elements. The resulting
dimensionality of the optimization space is close to that in the eight-ion tomography done inwork [29] and is
computationally intensive. The iterative algorithm runs on an Intel Core i7 processor. Paralleled onto 4 of 8
computing cores, each iteration takes about 2 h. Themaximum-likelihood reconstruction algorithm appears to
converge at around 100 iterations.

5. Results

Figure 2 shows the result of the process reconstructionwith ′ =N 2 in comparisonwith the theoretical
expectation according to equation (8)with an additional commonphase delay of 0.8 rad. The elements of the
process tensor associatedwith the diagonal elements of the input and output densitymatrices (figure 2(a)) have
transparent physicalmeaning as probabilities of the corresponding transitions. In particular, theHong–Ou–
Mandel effect is represented by the probability of ∣ 〉 → ∣ 〉1, 1 1, 1 transition, which is zero for ideally
symmetrical BS and amounts to 0.01 in the reconstructed tensor.

Figure 2.Reconstructed (top) and theoretically expected (bottom) process tensor in the Fock space up to ′ =N 2. (a) Elements of the
tensor corresponding to the diagonal elements of the input and output densitymatrices. Numbers give amplitudes of the non-zero
cells. The element ∣ 〉 → ∣ 〉1, 1 1, 1 corresponds to the coincidence probability in aHong–Ou–Mandelmeasurement. (b) The real
(left) and imaginary (right) parts of the full tensor. Each large cell corresponds to a specific element of the input densitymatrix, while
the content of each large cell gives the output densitymatrix. Insets show themagnified output for the input state ∣ 〉1, 1 .
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The data infigure 2(a) are only a small fraction of the full tensor shown in figure 2(b), which has ∼103 non-
zero, generally complex elements. These elements determine the phase behavior of the black box, and are equally
important in the description of the process. The left and right columns of the grid present, respectively, the real
and imaginary parts of the tensor, while the top and bottom rows correspond to the reconstruction result and
the theoretical expectation. The insets in each panel shows the response of our black box to theHong–Ou–
Mandel query, the ∣ 〉1, 1 input state. The diagonal of the left (real) panel infigure 2(b) corresponds to the full
panel infigure 2(a).

To characterize the quality of the reconstructed tensor shown infigure 2, we calculate thefidelity between the
ideal and reconstructed processes in the Jamiolkowski state representation:

     = =( ), Tr 0.95. (9)est est
⎡⎣ ⎤⎦

Weperform a few tests tofind the source of this non-ideality. First, we quantify the physical imperfections of our
black box byfitting the observed phase-dependentmean quadrature data with the theoretical prediction
corresponding to an arbitrary BS.We obtain that the power transmittance corresponding to the bestfit which is
0.502. Thefidelity between the processes associatedwith that slightly asymmetric BS and a symmetric one is
0.998, which shows that the physical errors (at least thosewhichmanifest in change of splitting ratio) are
insignificant. Second, we evaluate the statistical and systematic errors of the reconstruction using bootstrapping.
Specifically, we simulate the quadrature data expected fromamodel BS and apply themaxLik reconstruction
algorithm to them to calculate a set of tensors ′ iest, . The numbers of simulated data points, the dimensionality of
the reconstruction space and the number of algorithm iterations were taken the same as in the real

reconstruction procedure.Wefind   ′ ∼( ), 0.95iest, for all i. Similar values are observed for the pairwise

fidelities   ′ ′( ),i jest, est, aswell as for thefidelity   ′( ),iest, between themean of the bootstrapping tensors
and the theoretical one. These statistics show that the experimental fidelity of 0.95 results fromboth the
inaccuracy of the numerical reconstruction algorithm and the statistical error conditioned by the limited
amount of experimental data.

6. Summary

Wepresented experimental csQPT reconstruction of themost commonmultimode optical process, the beam
splitter. Our technique can be readily generalized to other processes, other physical systems and scaled up to a
higher number of channels and larger state spaces thanks to the simplicity of the required opticalmeasurements
and probe state preparation.
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