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We experimentally demonstrate entanglement distillation of the two-mode squeezed state obtained by
parametric down-conversion. Applying the photon annihilation operator to both modes, we raise the
fraction of the photon-pair component in the state, resulting in the increase of both squeezing and
entanglement by about 50%. Because of the low amount of initial squeezing, the distilled state does not

experience significant loss of Gaussian character.
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Entanglement is paramount in quantum technology.
However, entangled states are difficult to prepare and
vulnerable to decoherence and losses. This issue is par-
ticularly significant in quantum optical communications
where entanglement needs to be distributed over long
distances.

It can be addressed using entanglement distillation (ED)
[1], a procedure in which the parties use classical commu-
nications and local operations to obtain, from a set of
entangled states, a smaller set of states with a higher level
of entanglement. ED has been successfully demonstrated
in the discrete-variable domain [2,3]. But for continuous-
variable (CV) quantum-information processing, ED is com-
plicated because of a no-go theorem [4—6] that prohibits
distillation of a Gaussian entangled state by any Gaussian
operations. Gaussian operations include phase-space dis-
placement, squeezing, application of beam splitters, homo-
dyne detection—i.e., such operations that preserve the
Gaussian character of a state’s Wigner function and are
typical for CV processing. The primary continuous-variable
entangled resource, the two-mode squeezed vacuum
(TMSV), is Gaussian [7], so one must leave the boundaries
of the the CV domain in order to distill it. This is the purpose
of the present work.

TMSYV is of special value for quantum science and
technology [7]. Thanks to nonclassical correlation of
quadrature observables of the two modes, this state con-
stitutes a physically plausible approximation of the original
Einstein-Podolsky-Rosen state [8] that triggered the quan-
tum nonlocality debate. In addition to fundamental interest,
TMSYV is the basis of complete quantum teleportation [9]
and CV quantum repeaters [10], as well as certain quantum
metrology [11] and quantum key distribution [12,13]
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applications. Hence, it is important to develop and test a
reliable procedure for the distillation of that state.

A non-Gaussian operation that has been extensively
discussed in the context of CV ED is the photon annihi-
lation operator a. It is realized by reflecting the target
optical mode from a low transmissivity beam splitter with
the single-photon detector placed in its transmitted channel.
Registration of a photon heralds photon annihilation in the
reflected channel. This operation was first implemented by
Wenger et al. [14] and has since been used in a number of
CV quantum engineering experiments [15,16].

Entanglement distillation of the TMSV with photon
annihilation was first proposed by Opartny et al. [17]
and further theoretically investigated for photon-number
resolving [18] and threshold detectors [19]. A comprehen-
sive theoretical analysis in Ref. [20] considered different
types of detectors and realistic noisy measurements.

CVentanglement increase by photon annihilation has been
demonstrated experimentally, but in none of the existing
experiments did the resulting state retain the two-mode
squeezing property, i.e., simultaneous correlation of positions
and anticorrelation of momenta beyond the vacuum level.
Ourjoumtsev et al. applied nonlocal photon subtraction to
TMSY, resulting in a state that approximates the delocalized
single photon [21,22]. CV ED employing two-mode photon
annihilation was demonstrated for Gaussian input states
created by equal splitting of a single-mode squeezed state
in Ref. [23]. In that work, entanglement increase has been
observed along with enhanced nonclassical quadrature cor-
relations for specific values of the phase difference between
the two modes. In another set of experiments, artificial non-
Gaussian disturbance has been applied to a TMSYV, resulting
in a loss of its Gaussian character. Subsequently, the
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entanglement was distilled by means of a Gaussian process
[24,25], but not beyond the entanglement level of the
original TMSV.

We now proceed to explaining the idea of our work in an
idealized, loss-free setting. TMSV is obtained by applying
the two-mode squeezing operator S(¢) = 4@ ~41))
(where ¢ is the real squeezing parameter) to modes 1
and 2 initially in the vacuum state [26]. It has the following
representation in the photon number basis:

B) = S(0)[0,0) = VI=2) An.n). (1)
n=0

for 4 = tanh {. If we apply annihilation operators to both
modes of |¥), we find

a1a,|0) = V1= ni'ln—1n—1). (2
n=1

In the limit of small squeezing, both states (1) and (2) can
be approximated to its first order. After renormalization,
we find
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A higher contribution of the photon-pair term causes
the enhancement of both entanglement and two-mode
squeezing [20].

The price to pay for this enhancement is the loss of the
state’s Gaussian character. This is because the higher-
number terms in Eq. (2) do not follow the pattern (1) of
the TMSV. However, the emerging non-Gaussianity does
not preclude improved capacity of that state as a resource
for quantum teleportation [17-19], quantum dense coding
[27], quantum key distribution [28], and quantum metrol-
ogy [29]. In fact, it opens up new applications: for example,
the distilled (non-Gaussian) state can be used to demon-
strate quantum nonlocality by means of homodyne detec-
tion [30-32]. In our experiment, however, the loss of
Gaussian character is negligible because the down-
conversion amplitude A is relatively low, so the higher-
number terms do not play a significant role.

In the ideal case, entanglement distillation is also
expected if photon annihilation is applied to only one of
the modes of the initial TMSV:

a,|0) ~ [0,1) + V22

1,2). (5)

However, this state no longer has the form of TMSV and is
not expected to feature nonclassical quadrature correlation.
Furthermore, as we see below, in our experiment, state

a,|¥) does not exhibit increased entanglement because of
the losses.

A signature feature of two-mode squeezing is the
correlation of quadrature measurement statistics. In the
two modes, the position and momentum observables are,
respectively, correlated and anticorrelated beyond the level
allowed by the uncertainty principle for separable states:

<<X1:FX2)2> =X,
((P\FPy)?) = .

For quadrature observables X (0) = X cos @ + P sin 6 asso-
ciated with arbitrary phases in the two modes, the corre-
lated variance takes the form

([X1(61) £ X3(0,)1%) = {(1 =) + nlcosh(2{)
+ cos(6; + 6,)sinh(20)]},  (6)

where we have taken into account the optical loss 1 —# in
both modes. Remarkably, the correlation depends only on
the sum but not the difference of the phases in the two
modes. This feature can be understood by reviewing the
photon number decomposition (1) of TMSV. A phase shift
by angle @ in a single mode corresponds to operator e/",
where 7 is the photon number operator. Because all terms
of Eq. (1) contain equal photon numbers in both modes, a
change in 8, — 6, for constant 8, + 6, implies an equal and
opposite quantum phase shift of the two modes, and will
leave the state unchanged. This characteristic feature of
TMSV is preserved in our ED protocol, in contrast to
previous photon subtraction CV ED experiments [21-23].

homodyne detection
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L
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L —
initial state preparation

FIG. 1 (color online). Experimental setup. Type II parametric
down-conversion in a PPKTP crystal generates the two-mode
squeezed vacuum state in two polarization modes. Each mode is
subjected to the annihilation operator realized by an unbalanced
beam splitter and a single photon detector. The prepared distilled
two-mode squeezed state has higher squeezing and entanglement,
as verified by homodyne detection. SPCM, single-photon count-
ing module; PBS: polarizing beam splitter.
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In our experiment (Fig. 1), we generate a TMSV using
nondegenerate parametric down-conversion and perform
multiple quadrature measurements in both modes of the
original and distilled states. The acquired data allow us to
verify entanglement distillation in two ways. First, we
evaluate the phase-dependent variance of the sum and
difference of the quadratures acquired in the two modes and
verify that the minimal value of that variance decreases
after distillation, corresponding to a higher squeezing.
Second, we use the complete set of quadrature data for
full characterization of the original and distilled states by
means of homodyne tomography [15]. We then verify the
entanglement increase by evaluating, for both states, the
log-negativity value Ey = log,(1 + 2N), where negativity
N is the entanglement monotone [33] equal to the sum of
absolute values of negative eigenvalues of the state’s
partially transposed density matrix. For Gaussian states,
the log negativity is a proper measure of entanglement [34].

The experimental setup is presented in Fig. 1. The two-
mode squeezed state is prepared by a type Il spontaneous
parametric down-conversion in a periodically-poled potas-
sium-titanyl phosphate (PPKTP) crystal in a spatially and
spectrally degenerate but polarization-nondegenerate con-
figuration. The PPKTP crystal is pumped by 395-nm wave-
length pulses generated by doubling 790-nm pulses from a
master Ti:sapphire mode-locked laser, with a repetition rate
of 76 MHz and pulse width 1.6 ps. The down-conversion is
followed by a polarization-independent beam splitter with
11% transmissivity. The transmitted signal is subjected to
narrow-band spectral filtering, after which it is separated
according to polarization and each mode is subjected to single
photon detection. PerkinElmer SPCM-AQR-14-FC detec-
tors, coupled through single-mode fibers, are used [35]. In
spite of non-negligible two-mode squeezing and an over 50%
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efficiency of the detectors, the coincidence photon count rate
is only ~100 Hz because of the losses associated with the
spatial and spectral filtering [36]. The light reflected from
the beam splitter is separated into the two TMSV modes by a
polarizing beam splitter and each mode is subjected to
homodyne measurements [37]. The local oscillators for
the balanced homodyne detectors are derived from the master
laser.

Photon annihilation events correspond to “clicks” of
photon detectors in the relevant mode. Events without
detector clicks correspond to the initial TMSV |¥) and
are used to measure the local oscillator phases as well as
quantify initial squeezing and entanglement. Simultaneous
clicks in both detectors herald the distilled TMSV state, for
which we observe the squeezing and entanglement increase.

A detector click in only one of the modes (e.g., mode 1)
leads to the one-photon subtraction state (5) which approx-
imates, in the limit of low squeezing, a tensor product of the
vacuum and single-photon states. In the presence of losses,
the state of mode 2 becomes a mixture of the single-photon
and vacuum states. Reconstructing the state of that mode
permits precise evaluation of the loss present in the
experiment as 1 —#» =0.58+0.01 [38]. This figure
includes the 11% loss from the beam splitter used for
photon subtraction.

We allow the local oscillator phase in one of the
homodyne detectors to fluctuate freely with air movements
while that in the other channel is varied with a period of
about 1 s by means of a piezoelectric transducer. With each
heralding event, we acquire a single pair of quadratures
associated with that event plus a series of 9500 quadrature
pairs associated with subsequent (not heralded) laser pulses.
We can safely assume the local oscillator phases to be
constant during that acquisition. Because the output of the
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FIG. 2 (color online).

0 /2 kg
0,+6,

Variances of the sum and difference of the quadratures measured in the two modes: (a) unconditionally, (b)

conditioned on photon annihilation events in both channels. The noise level corresponding to the double vacuum state is 1. The solid line
in (a) is the fit based on a lossy TMSV model with the squeezing parameter of { = 0.19; the solid line in (b) is a theoretical prediction
based on the fit in (a) and photon annihilation applied in both modes. The dashed line in (b) corresponds to a TMSV model with
increased squeezing parameter { = 0.358 that has experienced the same loss as the state in (a). The dotted line in both panels
corresponds to the highest level of squeezing in the unconditionally measured state, according to the fit. The insets show histograms of
the sum and difference of the position quadratures corresponding to each case. The dashed line shows the standard quantum limit.
Enhancement of squeezing is present in (b) while the loss of Gaussian character is insignificant.
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parametric down-conversion is a two-mode squeezed state,
the correlated quadrature variance ([X,(6,)FX,(6,)]*) in
each series provides us with the information on the sum of
thelocal oscillator phases (6, + 6,) inaccordance with Eq. (6).

A plot of the measured variance of ([X;(6,)FX»(6,)]?)
versus phase 6, + 6, is presented in Fig. 2 for both
nonheralded [2(a)] and heralded [2(b)] measurements.
They correspond to states |¥) and a,a,|¥), respectively.
Minimum variances {[X;(6,) — X,(6,)]?) and ([X,(0,) +
X,(6,)]?) at local oscillator phases 6, + 6, being 0 and 7,
respectively, fall below the standard quantum limit, which
indicates squeezing. We observe an increase of squeezing
from 0.560 £ 0.005 dB for the undistilled state to 0.83 &
0.05 dB for the distilled state.

As expected for a TMSV with a small initial amount of
squeezing, the distilled state does not exhibit strong deviation
from the Gaussian shape [Fig. 2(b), inset]. This can be
quantified by evaluating the fourth moment of the quadrature
probability distributions. For example, for §; + 6, = 0, the
fourth moments of X;(0,) — X,(6,) and X,(0,) + X,(6,)
are 0.522 £0.010 and 1.532 £ 0.028, whereas the fourth
moments expected from Gaussian distributions with the
same variances are 0.516 and 1.532, respectively.

For higher precision analysis, we fit the data in Fig. 2(a)
by the model of quadrature variance dependence (6) for a
TMSYV with the value of 5 found previously. From that fit,
we evaluate the initial TMSV squeezing parameter, prior to
losses, as { = 0.190. If we subject this TMSV to two-mode
photon annihilation operation, we obtain theoretical curves
shown by solid lines in Fig. 2(b), which turn out to well
match the experimental data.

Taking advantage of the almost Gaussian nature of the
distilled state, we fit its measured variances [Fig. 2(b)] by a
TMSV with an increased squeezing parameter { = 0.358
that has undergone the same losses as the initial state
[dashed lines in Fig. 2(b)]. Good agreement is obtained,
indicating that the state has retained its two-mode squeezed
character after distillation.

From the quadrature measurements we reconstruct
density matrices of both the initial and final states in the
Fock basis up to three photons by means of the maximum-
likelihood method [39,40]. Absolute values of the lowest
density matrix elements are presented in Figs. 3(a) and 3(b).
The off-diagonal components |0,0)(1, 1] and |1, 1)(0, 0] in
the final state are significantly greater than those in the
initial state, serving as evidence of higher entanglement.
For a more rigorous estimation of the entanglement
increase, we evaluate the log-negativity parameter Ey from
the reconstructed density matrices and list it in Table I. An
increase by a factor of about 50% is present.

In an ideal setting, as seen from Eq. (5), we would also
expect entanglement increase in the case of single-mode
photon annihilation. However, in the presence of losses, the
one-photon subtracted state demonstrates lower entanglement
compared to initial TMSV (Table I). This is because the

(a)

0.977

FIG. 3 (color online). Low photon number components of the
density matrices (absolute values) reconstructed from the quad-
rature data sets measured: (a) unconditionally, (b) conditioned on
photon annihilation events in both channels, (c) conditioned on
photon annihilation event in channel 1. Increase in the off-
diagonal elements associated with terms |0,0)(1,1| and
[1,1)(0,0] in (b) compared to (a) is evidence of entanglement
distillation. All matrix elements above 0.005 are marked. No
compensation for the loss is implemented.

entanglement of that state (5) occurs due to the |1,2)
component [Fig. 3(c)], and the two-photon Fock state is
highly sensitive to losses, more so than the single-photon state.
For fair evaluation of the distillation procedure, we should
correct the parameters obtained for the unheralded state for
the loss occurring in the asymmetric beam splitter. The
corrected values for the squeezing and entanglement are still
significantly below those for the distilled state (Table I).
The entanglement increase factor in the procedure
described in this experiment is theoretically limited by 2.
More entanglement can be obtained by higher-order photon
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TABLE I. Parameters of the states before and after distillation.

Squeezing parameter ¢ Maximum
State from fit squeezing (dB) Log negativity
Initial TMSV 0.1900 +£ 0.0007 0.560 % 0.005 0.209 £+ 0.002
Initial TMSV compensated for beam splitter  0.1900 4 0.0007 0.63 + 0.005 0.239 £ 0.002
Two-mode photon subtraction 0.358 4+ 0.006 0.83 £0.05 0.30 £ 0.01
One-mode photon subtraction not applicable not applicable 0.12 £0.01

annihilation, but at a cost of dramatic productivity loss.
More promising techniques of CV entanglement distillation
would involve nonclassical light sources or nonlinear
optical interactions in both modes of TMSV. For example,
a procedure involving noiseless amplification [41] in both
modes has no fundamental limitation on the achievable
entanglement increase factor.
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