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INTRODUCTION
Photon echo experiments carried out on an optical

transition whose terminal states are nondegenerate give
rise to two kinds of modulation effects [1]. The first is
the modulation of the time-integrated echo signal inten-
sity as the excitation pulse separation is varied [2–4];
the second is the quantum beats displayed by the echo
signal itself [4–6].

When many neighboring nuclei contribute to the
hyperfine interactions, these effects are further enhanced
and lead to the complicated modulation patterns
observed in [3] and [6]. In an atomic vapor these
enhancements are not present and the modulation behav-
ior is amenable to exact calculation [4]. In this paper, we
make a systematic experimental and theoretical study of
quantum beat effects as they manifest themselves in pho-
ton echo experiments performed on simple four-level
systems. We analyze these effects with the help of the
billiard ball model (BBM) [7–9] and obtain excellent
agreement between experiment and theory.

A SIMPLE SYSTEM: CESIUM VAPOR
We choose to work on the 6

 

S

 

1/2

 

–6

 

P

 

1/2

 

 optical transi-
tion in Cs vapor, which is a simple four-level system.
Cesium is the heaviest among alkalis, minimizing Dop-
pler dephasing effects, and occurs as a single stable iso-
tope. The hyperfine interaction splits the terminal levels
and introduces both kinds of modulation effects.

Since the cesium nucleus has spin 

 

I

 

 = 7/2, the 6

 

S

 

1/2

 

and the 6

 

P

 

1/2

 

 levels in the atom of neutral cesium are
each split into two hyperfine sublevels with quantum
numbers 

 

F

 

 equal to 3 and 4. For both 6

 

S

 

1/2

 

 and 6

 

P

 

1/2

 

, the
sublevel with 

 

F

 

 = 4 has higher energy than the one with

 

F

 

 = 3; the magnitude of splitting is 9.193 GHz for the
ground state and 1.168 GHz for the excited state [10].
Each sublevel contains (2

 

F

 

 + 1) magnetic substates;
we specialize to the case in which the excitation
pulses are circularly polarized. If the quantization axis
is chosen along the light propagation direction, the
only nonvanishing transition matrix elements are
those which couple the states 

 

|

 

L

 

 = 6

 

S

 

1/2

 

; 

 

F

 

 = 3, 4; 

 

m

 

F

 

〉

 

and 

 

|

 

L

 

 = 

 

P

 

1/2

 

; 

 

F

 

 = 3, 4; 

 

m

 

F

 

 + 1

 

〉

 

. It suffices to separately
consider the echo formation process as it develops in
clusters of just four levels (see Fig. 1).

THEORY (FULL ECHO ANALYSIS)

We begin by constructing billiard-ball (BB) recoil
diagrams and associate a BB with each trajectory [7–9].
When BBs associated with different trajectories over-
lap, a macroscopic transition dipole moment develops
whose amplitude is proportional to the overlap. If the
macroscopic moment is phase-matched, coherent radia-
tion ensues. For a simple two-level system, the ordinary
two-pulse photon echo originates from a single crossing,
which occurs at 

 

t

 

 = 2

 

τ

 

 when resonant optical excitation
pulses are applied at 

 

t

 

 = 0 and 

 

τ

 

. For multilevel systems,
such as we consider here, the situation is more compli-
cated and it is possible for echoes to be generated at a
variety of crossings, not necessarily at 

 

t

 

 = 2

 

τ

 

.
Our analysis is for an arbitrary optical transition whose

terminal states are split into two or more hyperfine sublev-
els. The theory simplifies for a 1/2–1/2 transition, which
we illustrate for the 6

 

S

 

1/2

 

–6

 

P

 

1/2

 

 transition in Cs vapor.
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—Photon echoes are generated on the 6
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1/2

 

 transition in Cs vapor with excitation pulses short
enough to excite all hyperfine states. As the excitation pulse separation is varied, the temporal profile of the echo
reshapes and the time-integrated echo intensity modulates. These effects are typical of all the alkali vapors and
provide the simplest, nontrivial display of quantum beating in a four-level system. The present paper describes a
detailed experimental study of both kinds of modulation effects and utilizes the billiard ball model to analyze them. 
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Fig. 1.

 

 Energy level diagram for Cs showing the individual
hyperfine sublevels associated with the ground 6

 

S

 

1/2

 

 and
excited 6

 

P

 

1/2

 

 states. For an atom initially in a particular
hyperfine state, circularly polarized excitation pulses only
generate superposition states within the same cluster
(enclosed by the dashed lines).
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We assume that the splitting of the ground state is
small compared with 

 

k

 

B

 

T

 

, where 

 

k

 

B

 

 is the Boltzmann
constant and 

 

T

 

 is the temperature at which the experi-
ment is conducted. Since echo experiments are com-
monly preformed on samples in thermal equilibrium
with their environment, all ground hyperfine states are

uniformly populated. Therefore, the echo amplitude is
the sum of equally weighted contributions from all initial
states, in an arbitrary basis. In this section we choose the
basis consisting of hyperfine states 

 

|

 

L

 

, 

 

F

 

, 

 

m

 

F

 

〉

 

. In general,
there are (2

 

F

 

 + 1) nondegenerate ground hyperfine
states in each cluster, so that there are (2

 

F

 

 + 1) distinct
recoil diagrams. We specialize, for the moment, to the
recoil diagrams (Figs. 2a and 2b) that obtain for the
6

 

S

 

1/2

 

–6

 

P

 

1/2

 

 transition in Cs vapor as they are only two
in number and display the essential features of the more
general case.

For simplicity, we assume that the excitation pulses
are weak so that we have to present only those trajectories
which are excited to the first order. We label each trajec-
tory with the state to which it is associated. Referring
again to Figs. 2a and 2b, we note that each diagram
describes a situation in which the initial state 

 

|

 

6

 

S

 

1/2

 

, 

 

F

 

, 

 

m

 

F

 

〉

 

is promoted by a series of two excitation pulses into a lin-
ear combination of 

 

|

 

6

 

S

 

1/2

 

, 

 

F

 

, 

 

m

 

F

 

〉

 

 and 

 

|

 

6

 

P

 

1/2

 

, 

 

F

 

', 

 

m

 

F

 

 + 1

 

〉

 

with all possible values of 

 

F

 

 and 

 

F

 

'. In all recoil dia-
grams, there are eight crossings in the neighborhood of

 

t

 

 = 2

 

τ

 

 (two crossings occur at exactly 

 

t

 

 = 2

 

τ

 

) so that
each diagram gives rise to eight contributions to the
photon echo amplitude. Since the final ground and
excited states have components with both 

 

F

 

 = 3 and 4,
it follows that echo modulation components appear at
both ground and excited state hyperfine splitting fre-
quencies.

Associated with each trajectory there is a billiard ball

whose density is given by 

 

ρ

 

(

 

r

 

 – 

 

r

 

j

 

) = ( /

 

R

 

BB

 

)

 

3/2

 

 

 

×

 

exp[ ], where 

 

R

 

BB

 

 = 

 

�

 

/ , 

 

m

 

Cs

 

 is
the mass of the Cs atom, and 

 

j

 

 is the index of the tra-
jectory. At 

 

T

 

 = 300

 

°

 

 K, 

 

RBB = 3.5 × 10–10 cm. When
BBs of differing trajectories j and j' overlap, a macro-
scopic dipole moment is formed whose amplitude is

proportional to the overlap, fjj ' = ρ(r – rj')d3r =

exp[ ], of the associated BBs [7–9].
In Figs. 3a and 3b, we draw the recoil diagram of Fig. 2a
to scale and specialize to τ = 2 ns. We have centered a BB

2 π⁄
r r j–( )2

RBB
2⁄– mCskBT

ρ r r j–( )∫
r j r j'–( )2

2RBB
2⁄–

L' = 6P1/2
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F ' = 4
F' = 3

F = 4

F = 3
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F ' = 3

|L, F, mF 〉
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F = 3

L' = 6P1/2

L = 6S1/2

F ' = 4
F ' = 3

F = 4

F = 3

(b)

t = 0 t = τ t = 2τ

|L', F', mF '  + 1〉
F ' = 4

|L', F', mF '  + 1〉
F ' = 3
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Fig. 2. Billiard ball diagrams associated with an optical J =
1/2  J = 1/2 transition. Two classes of diagrams obtain
according to whether the initial state, |L, F, mF〉, corre-
sponds to the lower [as in (a)] or upper [as in (b)] hyperfine
sublevel.
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Fig. 3. A correctly scaled billiard ball diagram specialized to the Cs 6S1/2–6P1/2 transition in a saturated vapor at 300° K for τ = 2 ns.
In (a) the BB diagram is displayed over the complete range. The structure displayed in Figs. 2a and 2b is unresolved. In (b) we spe-
cialize to the conditions of Fig. 2a and expand the scale to reveal the trajectory structure.
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with radius RBB at the crossing and in Fig. 3b have
expanded the crossing region by a factor of ≅105. In
Fig. 3a, all detail relating to the separate hyperfine tra-
jectories is unresolved. We note that RBB is very large
compared to the spread in times at which the separate
crossings take place. We can therefore ignore any dif-
ferences in the crossing times and in terms of billiard
ball overlaps treat our diagram as a simple two-level
photon echo diagram. The same comments apply to
the appearance of the recoil diagram of Fig. 2b.

There are two trajectories, with indices 1 and 2, that
lead to the photon echo generation, and we display
them as heavy lines in Fig. 4. One diagram now suffices
for all cases, and it is no longer necessary to be
restricted to the simple 6S1/2–6P1/2 transition. Since
each propagator displayed represents one or more pairs
of hyperfine states, we proceed by labeling each trajec-
tory by the wave function associated with it. Initially
we begin in the generic state |L, F, mF〉; for Cs L would
stand for 6S1/2, L' for 6P1/2 and F, F' for either 3 or 4.
Along trajectory 1, this state evolves with an undimin-
ished amplitude (we assumed that the excitation pulses
are weak) so that up until t = τ, it is given by

, (1)

where �ωL, F is the energy of the state corresponding to
the quantum numbers L and F.

At t = τ, a resonant circularly polarized optical exci-

tation pulse of area  excites a linear combina-
tion of excited states |L', F ', mF + 1〉, F ' = 3 and 4, which
then develop according to exp[–iωL',F '(t – τ)] to yield

(2)

The evolution along trajectory 2 is initiated by the

first excitation pulse of area  and leads to an
excited-state evolution 

(3)

which at t = τ is deexcited into a ground state superpo-
sition that evolves according to

(4)

The dipole moment that is formed after the second
excitation pulse is proportional to exp[–(r1(t) –

r2(t))2/(2 )] , where r1(t) – r2(t)

Ψ1
t τ<( )

t( )| 〉 iωL F, t–[ ] L F mF, ,| 〉exp=

ΘF mF F', ,
L L', τ( )

Ψ1
t τ>( )

t( )| 〉 i
2
--- iωL F, τ–[ ]exp=

× ΘF mF F ', ,
L L', τ( ) iωL' F ', t τ–( )–[ ] L' F' mF 1+, ,| 〉exp .

F '

∑

ΘF mF F', ,
L L',

0( )

Ψ2
t τ<( )

t( )| 〉 i
2
--- ΘF mF F ', ,

L L',
0( )

F '

∑=

× iωL' F ', t–[ ] L' F' mF 1+, ,| 〉,exp

Ψ2
t τ>( )

t( )| 〉 1
4
--- ΘF mF F ', ,

L L',
0( )ΘF ' mF 1+ F'', ,

L L', τ( )
F ''

∑
F '

∑=

× iωL' F ', τ–[ ] iωL F '', t τ–( )–[ ]expexp L F'' mF, ,| 〉.

RBB
2 Ψ1

t τ>( )
t( )〈 |P Ψ2

t τ>( )
t( )| 〉

is the displacement of trajectories 1 and 2 at time t [7–9].
The matrix element is given by

(5)

where ωL = ( )/(2L + 1); δωL, F = ωL, F – ωL .

The photon echo intensity can be calculated from

(6)

and involves a sum over many states. This is the for-
mula we use to compare with our measurements of the
photon echo intensity in Cs vapor.

In calculating (6), it is useful to note that the excita-

tion pulse area  is proportional to the transition
matrix element:

(7)

where  = 〈L', mj|P|L, mj + 1〉 is independent of mI and
F and can be calculated from the Wigner–Eckart theorem.
We use this relation to simplify (5) in the case of Cs.

Ψ1
t τ>( )

t( )〈 |P Ψ2
t τ>( )

t( )| 〉 i
8
--- i ωL ωL'–( ) t 2τ–( )[ ]exp–=

× L' F' mF 1+, ,〈 |P L F''' mF, ,| 〉{
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∑

× ΘF mF F ', ,
L L'*, τ( )ΘF mF F '', ,

L L',
0( )ΘF '' mF 1+ F ''', ,
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× iδωL' F '', τ–[ ] iδωL F ''', t τ–( )–[ ]exp },exp

ωL F,F∑
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2
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L' F' mF 1+, ,〈 |P L F mF, ,| 〉

=  L' F' mF 1+, , L' m j I mI mF m j–=, , ,〈 〉
m j

∑
× Mm j

L m j 1+ I mI mF m j–=, , , L F mF, ,〈 〉 ,
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t = 2τt = τ

r(t)

t = 0

Ψ1
(t < τ)(t)
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(t < τ)(t)

Ψ2
(t < τ)(t)

Ψ1
(t < τ)(t)

Fig. 4. The elementary billiard ball diagram shows the two
trajectories that lead to photon echoes. The heavy solid line
trajectory corresponds to Ψ1, the dashed to Ψ2.
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Specializing to 1/2  1/2 Transition

We use (7) to obtain a simple expression for (5)
when specializing to the 6S1/2–6P1/2 cesium transition: 

(8)

where we have defined

(9)

where Θ1 and Θ2 are dimensionless quantities and

 is a Clebsch–Gordon coefficient. The physi-
cal reason underlying this simplicity will be discussed
in the last chapter of the paper.

SIMPLE ECHO ANALYSIS

We can gain some insight into the echo behavior by
studying the quantity

(10)

Ψ1
t τ>( )

P Ψ2
t τ>( )〈 〉 i

8
--- i ω6P1 2⁄
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∑
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t τ–( ),

G̃L 1 2⁄±,
mI

t( ) iδωL F, t–[ ] C 1 2⁄± mI,
F mI 1 2⁄±,

( )
2

exp ,
F 3 4,=

∑=

C 1 2⁄± mI,
F mI 1 2⁄±,

( )

Q t( )  ≡  i 
8
---– i δω L F , τ[ ] i δω L ' F ' , t τ –( ) [ ] expexp 

F F

 

'

 

F

 

''

 

F

 

'''

 

, , ,

 ∑  

×

 

i

 

δω

 

L

 

'

 

F

 

''

 

,

 

τ

 

–

 

[ ]

 

i

 

δω

 

L F

 

'''

 

,

 

t

 

τ

 

–( )–

 

[ ]

 

,expexp

 

which is how the rephased dipole moment (5) for one
cluster would reform if all matrix elements were equal
to unity.

 

6S

 

1/2

 

–6P

 

1/2

 

 Cs Transition

 

On specializing to the 6

 

S

 

1/2

 

–6

 

P

 

1/2

 

 transition, (10)
becomes

(11)

Here, we have defined 

 

δω

 

L

 

 = 

 

ω

 

L

 

,4

 

 – 

 

ω

 

L

 

,3

 

. The echo
intensity would then follow

(12)

where 

 

f

 

 is the overlap factor,

, (13)

and 

 

S

 

 controls the beating,

(14)

It is instructive to examine this expression because it
gives insight into the manner in which the modulation
effects are produced. In addition, although the expres-
sion is clearly a gross oversimplification, in the majority
of cases, as we shall see, it gives quite accurate results.
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 Decomposition of equation (12). The functions 4

 

f

 

2

 

(

 

t

 

 – 2

 

τ

 

) and 

 

S

 

(

 

t

 

 – 

 

τ

 

) are plotted as a function of 

 

t

 

 – 

 

τ

 

, while 

 

S

 

(

 

τ

 

) is plotted
as a function of 

 

τ

 

. The position of 4

 

f

 

2

 

(

 

t

 

 – 2

 

τ

 

) depends on the choice of 

 

τ

 

. We have chosen to display 4

 

f

 

2

 

(

 

t

 

 – 2

 

τ

 

) for the 

 

τ

 

 5.516, 6.851,
7.718, and 8.385 ns for which we have experimental results. The amplitude of 

 

S

 

(

 

τ

 

), which determines the overall amplitude of the
photon echo, has been marked by a circle at each of τ. It lies directly below the peak of the corresponding function 4 f 2(t – 2τ).
As τ increases, the function 4f 2(t – 2τ) moves to the right.
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In Fig. 5, we plot f 2(t – 2τ) and S(t – τ) as a func-
tion of t – τ and S(τ) as a function of τ. We vary the
argument of S over the range of 5 to 10 ns. In displaying
f 2(t – 2τ), we choose the four cases τ = 5.516, 6.851,
7.718, and 8.385 ns, which we are able to compare with
experiment. For each of the four values of τ, we circle the
corresponding point on the S(τ) plot. This value of S(τ)
determines the overall magnitude of the echo intensity
for the τ chosen. The temporal shape of the echo is deter-
mined by the product f 2(t – 2τ)S(t – τ). This product
can be estimated by visual inspection of Fig. 5.

As we increase τ, the curve f 2(t – 2τ), which peaks
at t – τ = τ, moves to the right in Fig. 5. The modulation
of the intensity follows S(t – τ), which has frequency
components at both the ground and excited state hyper-
fine splitting frequencies. In order to follow the tempo-
ral display exactly, very fast detectors would be
required. The detectors available to us in this experi-
ment were able to resolve beats at the excited but not
ground state splitting frequency. The information on
high-frequency modulation is more readily available by
measuring the integrated echo intensity as a function of τ.
In this case, slow detectors suffice.

EXPERIMENTAL APPARATUS
A Spectra-Physics series 3000 actively mode-locked

Nd:YAG laser was used to produce a train of 80 ps
pulses separated by 12 ns. The pulse train was fre-
quency doubled to 532 nm in a KDP crystal; the aver-
age output power was 1W. After attenuation by a factor
of 2, the pulses were used to synchronously pump a
Spectra-Physics 375B dye laser, which was tuned to the
λ = 894 nm 6P1/2–6S1/2 transition in cesium. This laser
produced a train of 10-ps pulses which were close to
transform-limited. These pulses were then spectrally
filtered [11], amplified in a Quanta-Ray pulsed dye
amplifier, spatially filtered, and divided along two beams
of equal intensity (Fig. 6). One beam passed through a
delay line composed of a mirror and a retroreflector. The
mount of the retroreflector was movable along a rail,
which was carefully aligned so that the direction and
position of the delayed beam did not change with the
magnitude of the delay. The two beams were then
recombined with another beamsplitter and directed to a
1-cm quartz-walled cell containing saturated cesium
vapor at room temperature. The angle between the
beams was equal to φ = 5 mrad, which satisfies the coher-
ence condition [12], φ2 � λ/L, where L = 1 cm is the
thickness of the cell. Photon echoes emerging from the
cell were spatially filtered, in order to facilitate in block-
ing the excitation pulses, and focused on a EG&G
C30971E photodiode (“fast FND”) with 1 GHz band-
width. The pump intensity was also monitored with the
EG&G FND-100 photodiode (“slow FND”).

EXPERIMENT
The experiment consisted of two parts: (1) In the first,

we investigated temporal profiles of the echoes. The

output of the “fast FND” photodetector was fed into the
1-GHz Tektronix 7A29 amplifier mounted in the 7104
oscilloscope mainframe. The waveforms appearing on
the oscilloscope screen were recorded by a Tektronix
digital camera system and stored in the computer’s mem-
ory for further analysis. For each position of the retrore-
flector, six waveforms were taken. (2) In the second part
of the experiment we studied the dependence of the time-
integrated echo intensity on the separation between the
excitation pulses. The fast and slow FND outputs were
directed into Stanford Research System gated integra-
tors. The gate width was 40 ns for the pump and 7 ns for
the echo detector. The output of the gated integrators was
digitized and recorded. For each position of the retrore-
flector, 1000 measurements were made.

The delay between the excitation pulses was mea-
sured as follows. The retroreflector was set to a position
that provided close but separated traces of the excitation

Cs cell

beamsplitter

from amplifier

pinhole
echo signal

fast FND

slow FND

first pulse

second pulse

Fig. 6. A schematic diagram shows the essential elements of
the photon echo experiment.

0.10

0.05

0

10
t, ns

V(t), V

2–1–2

Fig. 7. The detector response function as displayed on a
Tektronix 7104 mainframe using a 7A29 input amplifier.
It responds to the output of a 1-GHz-bandwidth “fast
FND” which is irradiated by a 10-ps optical excitation pulse.
The zero of time is chosen at the peak of the response so that
the displayed intensity will appear undelayed by the “slow”
detector response. This facilitates a comparison between
experimental measurements and theory.
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pulses on the oscilloscope screen. The distance
between the maxima of these traces provided the pulse
separation at this reference point. Assuming perfect lin-
earity for the oscilloscope time base, the ±2% (20 ps)
Tektronix time base calibration uncertainty was the
most significant source of error in this measurement.
With this fixed point and precise measurement of the
position of the retroreflector along the rail, the time
delay between any pair of the excitation pulses could be
determined to within the 20 ps uncertainty of the time
base calibration.

Each oscilloscope trace can show (on an expanded
scale) the photon echo preceded by the two excitation
pulses which leak through the “blocking” aperture.
The latter, being short, provide us with the detector

response function V(t) (see Fig. 7). This we convolve
with the calculated response I(t), equation (6), to pro-
duce the detector modified response 

, (15)

which we can compare with experiment. Note that we
have set the argument of V(t) equal to zero at the peak
of V(t) so that both I(t) and Idet(t) are centered at t = 2τ.

RESULTS (TEMPORAL PHOTON ECHO 
PROFILE)

Photon echo oscilloscope traces are shown in
Figs. 8a–8d for excitation pulse separations of τ = 5.516,

Idet t( ) I t'( )V t t'–( )dt'∫=

50

40

30

20

10

0

I(t), mV

τ = 5.516 ns

200

150

100

50

0

τ = 6.851 ns

(a)

(b)

–3 –2 –1 0 1 2 3
t – 2τ, ns

Fig. 8. Experimental photon echo traces plotted t – 2τ are presented for τ equal to 5.516, 6.851, 7.718, and 8.385 ns in (a–d).
The heavy traces show AIdet(t), where A is a normalization to facilitate comparison with experiment. The renormalization factor is
the same in all four graphs.
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6.851, 7.718, and 8.385 ns. The traces show the tempo-
ral beating associated with the excited state hyperfine
splitting. For each value of τ, we calculated the
response Idet(t) of equation (15). We calculated the
response over a spread of τ and found the best fit
obtained when we made an 18 ps correction. The above
list of τ incorporates this correction. The resulting cal-
culated response was normalized and presented as the
heavy line trace. It is clear that excellent agreement
between experiment and theory is achieved.

Inherent in our analysis is the assumption that the
sample is optically thin and excitation pulse areas are
small enough to justify neglect of second-order effects.
The intensity of the excitation pulses fluctuated consid-
erably and led to a corresponding fluctuation in the
photon echo amplitude. The independence of the tem-

poral echo shape for the various traces we observed
argues that the excitation pulse areas are small in the
most of the excited volume. These separate traces are
due in large part to variations in pump intensity which
would lead to differing temporal pulse profiles if we
were not in the small pulse area regime. To test for
pulse propagation effects, we heated the sample and
found no changes in temporal profile as long as the
sample temperature was less than 315 K.

RESULTS (INTEGRATED PHOTON ECHO 
RESPONSE)

The integrated echo response as measured by the 7-ns
gate and averaged over 1000 measurements is pre-
sented in Fig. 9. We swept τ from 6 to 8 ns readjusting
the laser alignment at 7.3 ns to correct for slight drift in
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the pump intensity. The temporally integrated (over the
duration of the echo) echo response 

(16)

was calculated, normalized, and shown as a solid line.
The result of this calculation has been renormalized to
facilitate comparison with the data. The experimental
trace was shifted by somewhat less than 20 ps to
improve the fit. As expected we now observe modula-
tions at both the ground and excited state hyperfine
splitting frequencies. Again, we obtain good agreement
between experiment and calculation, except the region
6 < τ < 6.4 ns, where the pump laser did not function
properly.

The data of Fig. 9 shows no indication of any overall
decay, thus justifying our neglect of any homogeneous
T2 process.

DISCUSSION (FULL versus SIMPLE THEORY)

In addition to obtaining excellent agreement
between experiment and the full theory (which respects
the differences in the transition matrix elements
involved in the photon echo process), we find that the
simple theory [which leads to expression (11) and the
results presented in Fig. 5] is surprisingly faithful to
experiment. The major features of the experimental
modulation pattern displayed in Fig. 9 are also found in
Fig. 5. The main discrepancy is to be found in the region
where the expected echo signals are small. For example,
the magnitude of the calculated simple model response
for τ = 5.516 ns is much too low. This is not surprising,
as the interferences, which reduce signal intensity,
wash out when allowance is made for a variation in
matrix element magnitudes. The measured temporal
echo waveforms displayed in Fig. 8 agree very well
with what would be predicted from the simple theoret-

I int τ( ) Idet t( )dt∫=

ical traces of Fig. 5. Once the effect of detector band-
width is appreciated, it is clear that the major modula-
tion features are accounted for.

THEORY (SPECIALIZED FOR THE Cs 1/2  1/2 
TRANSITION)

In deriving equation (6), we used the “natural” basis
consisting of the energy eigenstates |L, F, mF〉 and
exploited the fact that the BB radius, RBB, was large
compared to the region in which the separate trajecto-
ries crossed. The slightly diverging neighboring trajec-
tories could then be considered degenerate and the
recoil diagram in Fig. 4 reduced to that for a two-level
system. Each trajectory then described a coherent
superposition state associated with a particular mF and
all Fs. This simplification, notwithstanding, still leads
to a formula, equation (6), which involves, even for the
6S1/2–6P1/2 transition, multiple sums over hyperfine
states. But since the trajectories are effectively degener-
ate, another way of dealing with this transition is instead
to use the atomic states |L, J, mJ, I, mI〉 since mI does not
change in an optical transition. There is then only one
transition matrix element 〈6P1/2, +1/2 |P |6S1/2, –1/2〉.
The analysis follows as before except that we now deal
only with atomic states and we only keep those terms
which ultimately contribute to the transition dipole
moment. For a given mI, there are initially two ground
states: |6S1/2 , –1/2〉 and |6S1/2 , +1/2〉. Since circularly
polarized excitation pulses have to increase mJ  by 1, the
second state does not participate in the echo formation
process and can be dropped. Therefore, following the
previous notation we write, in place of equation (1), 

, (17)

where

(18)

is the Green function for a recoil diagram propagator,

and  is the Hamiltonian. In writing equation (17), we
have omitted the term proportional to |6S1/2, +1/2, mI – 1〉
since we anticipate the action of the circularly polar-
ized excitation pulse to be applied at t = τ, which does
not connect it to any excited state. Thus, there is no rea-
son to carry it along. In contrast to the behavior of equa-
tion (1), the state associated with the first part of trajec-
tory 1 in Fig. 4 is amplitude modulated according to
equation (18). This is because |6S1/2 , –1/2, mI 〉 is not an
eigenstate of the Hamiltonian. The Green function
gives the factor by which its amplitude is diminished

Ψ1
t τ<( )

t( )| 〉 G6S1 2⁄ 12–,
mI t( ) 6S1 2⁄ 1 2⁄– mI, ,| 〉=

GL 1 2⁄±,
mI t( ) L 1 2⁄± mI, ,〈 |e iĤt �⁄–

L 1 2⁄± mI, ,| 〉=

=  iωL F, t–[ ] C 1 2⁄± mI,
F mI 1 2⁄±,

( )
2

exp
F 3 4,=

∑

=  iωLt–[ ]G̃L 1 2⁄±,
mI

t( )exp

Ĥ

0
6 7 7.5 86.5

2

4

6

τ, ns

Iint(τ), mV

Fig. 9. Experimental data shows the integrated echo inten-
sity as a function of τ. The solid trace is A'Iint(τ), where A' is
a normalization constant. 
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because of transfer to |6S1/2 , +1/2, mI – 1〉. After the
excitation pulse at t = τ, we obtain the state 

(19)

Proceeding in a similar manner, we find for the final
leg of trajectory 2: 

(20)

In equations (19) and (20), Θ1 and Θ2 are the areas of the
first and second excitation pulses with respect to the tran-
sition |6S1/2, –1/2, mI〉  |6P1/2, 1/2, mI〉. These quan-
tities are the same for all values of mI. Using (19) and
(20), we obtain the transition dipole moment (8) directly. 

DISCUSSION

The method presented here is somewhat different
from that used in the conventional BBM. In the latter,
one deals directly with stationary states for which there
is a well-defined BB trajectory. The atomic states, on
the other hand, are not eigenstates and have no precise
recoil velocity or trajectory. However, the uncertainty in
the trajectory for these states is much smaller than RBB
(Fig. 3) and therefore is negligible. We express this as

(21)

We also require that all the excitation pulses are short
enough to excite all hyperfine states.

A significant advantage of the method presented
here is that the photon echo process is directly inter-
pretable as a modulation in the state amplitudes (19)
and (20). This is not intuitively displayed in the eigen-
state amplitudes (2) and (4). In the latter case it is nec-

Ψ1
t τ>( )

t( )| 〉 i
2
---G6S1 2⁄ 1 2⁄–,

mI τ( )Θ2G6P1 2⁄ +1/2,
mI t τ–( )=

× 6P1 2⁄ 1 2⁄ mI, ,| 〉.

Ψ2
t τ>( )

t( )| 〉 1
4
---Θ1G6P1 2⁄ +1/2,

mI τ( )Θ2*G6S1 2⁄ 1 2⁄–,
mI t τ–( )–=

× 6P1 2⁄ 1 2⁄– mI, ,| 〉.

δV recoilτ
�δωL

cmCs
-------------  �  R BB .=  

essary to take linear combinations of state amplitudes
to obtain the same visualization.

It is to be noted that the method can be easily general-
ized to situations where there are more than two hyperfine
sublevels associated with each energy level. However,
the complexity of the resulting expressions increases
rapidly with the number of sublevels.
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